ATB RADIO

EN VIVO

ATB Digital
Ciencia

Crean músculo humano que sobrevive en condiciones espaciales extremas

Crean músculo humano que sobrevive en condiciones espaciales extremas

Mundo, 05 de nov 2025 (ATB Digital).- Un equipo de ETH Zurich dio un paso fundamental hacia la medicina espacial del futuro: la creación de tejido muscular humano viable en microgravedad. Utilizando vuelos parabólicos para simular la ausencia de gravedad, los científicos demostraron que no solo es posible fabricar músculo humano fuera del planeta, sino también conservarlo y adaptarlo a las condiciones extremas del espacio.

Durante décadas, la fabricación de tejidos para experimentos espaciales se realizaba en la Tierra, enviando los modelos para su observación y maduración más allá de la atmósfera. Ahora, gracias a estos avances, la fabricación se traslada directamente al ambiente espacial, abriendo nuevas perspectivas tanto para la salud de los astronautas como para el estudio de enfermedades complicadas de analizar en condiciones convencionales.

G-FLight: láser, bio-resinas y células alineadas para un nuevo paradigma

El trabajo, que fue publicado en la revista Advanced Science y liderado por Parth Chansoria, se apoya en una tecnología desarrollada específicamente para entornos sin gravedad: la plataforma G-FLight. Este sistema emplea un láser con un patrón de luz especial, capaz de organizar las células dentro de una bio-resina para formar fibras musculares alineadas de manera precisa.

Utilizando 30 ciclos de vuelos parabólicos —donde durante breves momentos se simula el ambiente de ingravidez del espacio— el equipo consiguió imprimir músculo humano en cuestión de segundos, un resultado imposible con técnicas tradicionales.

Uno de los pilares de esta innovación es la nueva bio-resina a base de gelatina metacrilada (GelMA), diseñada para encapsular células vivas y permitir su almacenamiento prolongado. Las pruebas mostraron que las muestras podían conservarse al menos una semana a 4℃ o incluso a -80℃, lo cual se adapta perfectamente a la logística de las misiones espaciales, donde mantener materiales biológicos viables durante el viaje es un reto constante.

A diferencia de los métodos terrestres, la ausencia de gravedad elimina las deformaciones que suelen afectar la estructura del tejido y la distribución de células en la bio-tinta utilizada para impresión 3D. En microgravedad, los filamentos impresos mantienen su alineación natural, creando fibras musculares con mayor precisión y funcionalidad. Esto supone una ventaja clave para la ingeniería de tejidos y para el desarrollo de tratamientos médicos avanzados en el espacio.

Impactos biomédicos y aplicaciones en el espacio y la medicina

Los resultados muestran que el tejido muscular impreso en microgravedad mantiene una viabilidad celular y una densidad de fibras similar a las estructuras fabricadas en la Tierra, pero con potencial para superar algunas de sus limitaciones.

Este avance tiene repercusiones biomédicas inmediatas. Por ejemplo, los modelos de músculo impresos de esta forma pueden utilizarse para analizar enfermedades como la distrofia muscular o la atrofia provocada por la ingravidez, una de las mayores amenazas a la salud de los astronautas durante misiones prolongadas.

Poder fabricar tejidos personalizados en pleno espacio daría la oportunidad de atender emergencias médicas sin depender de suministros terrestres y facilitaría investigar el efecto de fármacos en sistemas biológicos mucho más realistas.

Según ETH Zurich, esta tecnología podría revolucionar la manera en que se planifican las misiones de larga duración, al permitir el desarrollo de injertos y modelos de órgano a medida en plataformas como la Estación Espacial Internacional.

Otra de las innovaciones aportadas por el sistema G-FLight es la capacidad de refrigerar o criopreservar las bio-resinas cargadas con células, algo que simplifica enormemente la gestión de los recursos médicos durante las misiones y permite aprovechar mejor los tiempos de viaje, preparando tejido cuando sea requerido y conservándolo hasta su uso.

A largo plazo, el equipo de ETH Zurich proyecta ampliar la aplicación de esta tecnología para imprimir otros tipos de tejidos y órganos complejos en órbita, un paso fundamental para que futuras colonias o bases espaciales dispongan de atención médica avanzada e independiente del soporte terrestre.

La utilización conjunta del sistema G-FLight y las nuevas bio-resinas representa no solo un salto técnico, sino también una oportunidad única de investigar cuestiones fundamentales sobre el funcionamiento y el cuidado del cuerpo humano cuando se aleja de la Tierra.

Fuente: Infobae

Noticias relacionadas

Científicos logran traducir pensamientos en palabras

Sergio Aliaga

Científicos inventan un plástico resistente pero fácil de reciclar

ATB Usuario

Científicos resucitan proteínas de hace millones de años para corregir albinismo humano

ATB Usuario